Introduction

- Channelrhodopsins (ChRs) are directly light-gated cation channels
 - Channel pore opened by light-induced isomerization of bound all-trans-retinal
- ChR1 & ChR2 found in eyespot of motile algae *Chlamydomonas reinhardtii* [1].
- C1C2 is a chimera of ChR1 + ChR2 used as a structural model for rational ChR design [2].
- Optogenetic research tool- enables precise control of excitable cells with light [3].
 - Vision restoration
 - Neuronal circuit mapping
 - Optogenetic pacemakers
- Wild-type channel is non-selectively permeable: $H^+ >> Na^+ > K^+ >> Ca^{2+}$
- Growing need for more selective ChRs for cell type-specific applications

Objectives

- Measure the functional effects of single-residue substitutions at conserved positions near central gate of C1C2
- How does electrostatic charge in the pore near the central gate impact calcium selectivity?

Measuring Ca$^{2+}$ selectivity of C1C2 wild-type and mutants expressed in *Xenopus laevis* oocytes via TEVC [4]

Site-Directed Mutagenesis & in vitro mRNA Synthesis

- Point mutations introduced into C1C2 gene via PCR: N297D, N297V
- mRNA synthesized in vitro using commercial kit

Pre-treatment with BAPTA-AM

- Influx of Ca$^{2+}$ through C1C2 could activate endogenous Ca$^{2+}$-activated Cl$^-$ channels (CaCCs)
- Oocytes briefly incubated with cell-permeant Ca$^{2+}$ chelator BAPTA-AM to buffer intracellular Ca$^{2+}$ and suppress contaminating Cl$^-$ currents

Functional Expression in *Xenopus laevis* oocytes

- mRNA of wild-type or mutant C1C2 injected into defolliculated oocytes
- Oocytes incubated for 48-72 hours to allow for expression of C1C2 on plasma membrane

Permeability Ratios

<table>
<thead>
<tr>
<th>X</th>
<th>P_{X} / P_{Na}</th>
<th>Permeability Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1C2 WT</td>
<td>0.28</td>
<td>0.85 (\times 10^6)</td>
</tr>
<tr>
<td>N297D</td>
<td>0.29</td>
<td>0.83 (\times 10^6)</td>
</tr>
<tr>
<td>N297V</td>
<td>0.81 (\times 10^6)</td>
<td>0.51 (\times 10^6)</td>
</tr>
</tbody>
</table>

2. Electrophysiological Measurements

- Membrane clamped at series of fixed potentials (subplot)
- C1C2 activated with blue light (blue bar) & whole cell current recorded
- Shifts in reversal potential reflect shifts in relative ion permeability through open channels

Conclusion

- BAPTA-AM treatment successfully suppressed activation of interfering CaCC's during Ca$^{2+}$ current recording for C1C2 wild-type and mutants
- Replacement of polar residue Asn297 with negatively charged Asp increased Ca$^{2+}$ permeability relative to Na$^+$ by 75% compared to wild-type
- A polar to non-polar substitution at the same position increased H$^+$ permeability relative to Na$^+$ by 61%, but relative Ca$^{2+}$ permeability was unaffected.
- Negative electrostatic charge near central gate is important for high Ca$^{2+}$ selectivity in C1C2

Acknowledgments

This research was supported by the Worcester Polytechnic Institute Research Foundation. The authors would like to thank WPI and fellow members of the Dempski group for their support and for providing invaluable feedback throughout this study.

References